Daniel E. Goldberg, MD, PhD

Daniel E. Goldberg, MD, PhD

David M. and Paula L. Kipnis Distinguished Professor, Departments of Medicine and Molecular Microbiology

Dr. Goldberg does basic research on the biology of malaria and identification of drug targets. Parasites have evolved many clever ways to infect their hosts and develop within them. Researching these processes at a molecular level should lead to treatment or prevention of parasitic infections that afflict most of humanity. His laboratory currently has 4 graduate students, 2 postdocs, one pediatric ID fellow, one technician and a research associate professor. Dr. Goldberg directs the Infectious Diseases/Basic Microbial Mechanisms T32 training grant.

Intraerythrocytic malaria parasites are fascinating creatures. They have evolved many clever strategies for survival inside their host cell. Most of these adaptations are still biological mysteries. Indeed, nearly half of the Plasmodium proteome comprises proteins of unknown function. Some are species or phylum specific; others have orthologs spread widely through phylogeny. We are interested in defining the roles of such proteins, with a special focus on proteases of unknown function. We use a combination of genetic and biochemical approaches to elucidate biological roles. To help us with this analysis, we have developed a regulated protein knockdown system for the study of essential proteins. This has allowed us to define a role for Plasmodium calpain in nucleolar control of cell cycle progression and a role for the aspartic protease plasmepsin V in export of parasite proteins to the host erythrocyte.

We are particularly interested in exported proteins. The parasite exports several hundreds of proteins into its host erythrocyte. What are these proteins doing in the host cell and beyond? How do the proteins get out of the parasite?

Another mysterious attribute of the Plasmodium proteome is that nearly one-third of all proteins have runs of asparagine. Two proteins we are studying have 30 and 80 consecutive asparagines. What are these asparagines for? Since polyasparagine is amyloidogenic, how does the cell handle all these proteins? Using genetic and biochemical manipulations, we are trying to address such issues.

Plasmodium has more than 5,000 predicted gene products. New drug targets are desperately needed, but which genes are essential? We are using approaches such as allelic replacement and chemical genetics to get at this question. One focus is isoleucine utilization. We have found that isoleucine is the sole exogenous amino acid required for parasite growth. By selecting parasites resistant to isoleucine utilization inhibitors, we have been able to define targets within this pathway. Whole genome sequencing can pinpoint resistance mutations. Allelic replacement then allows us to show that a given mutation in a target is responsible for the observed resistance.

Our work involves a combination of biochemical, genetic, genomic, cell biological and physiological approaches aimed at understanding the biology of this nefarious organism.

Related Links
Additional Titles
  • Professor of Medicine & Molecular Microbiology
Education
  • A.B. Magna cum laude in Biochemistry: Harvard College, Cambridge, MA (1978)
  • Medical Degree: Washington University, St. Louis, MO (1985)
  • PhD, Molecular Biology: Washington University, St. Louis, MO (1985)
  • Residency, Internal Medicine: Brigham and Women’s Hospital, Boston, MA (1987)
  • Fellowship, Infectious Diseases: Washington University, St. Louis, MO (1988)
Board Certifications
  • Infectious Diseases
  • Internal Medicine
Recognition
  • Washington University School of Medicine Distinguished Educator Award, 2013
  • Washington University DBBS 100 Club, 2013
  • Washington University School of Medicine Second Century Award, 2013
  • CC and Alice Wang Award, American Society for Biochemistry and Molecular Biology, 2013
  • Washington University Medical Center Alumni Association Faculty Achievement Award, 2014
  • Elected, Fellow of the American Academy of Microbiology, 2014
  • Research Exemplar Award for leadership and integrity, 2017
  • Washington University DBBS Thesis Chair Award 2020
  • Distinguished Alumni Scholarship awarded in Daniel Goldberg’s name 2021
Selected Publications
  1. Nasamu AS, Glushakova S, Russo I, Vaupel B, Oksman A, Kim AS, Fremont D, Tolia N, Beck JR, Meyers MJ, Niles JC, Zimmerberg J, Goldberg DE: Plasmepsins IX and X are essential and druggable mediators of egress and invasion in malaria parasites. Science 2017; 358: 518-522.
  2. Sigala PA, Crowley JR, Henderson JP, Goldberg DE: Deconvoluting heme biosynthesis to target blood-stage malaria parasites. eLife 2015; 4: e09143.
  3. Beck J, Muralidharan V, Oksman A, Goldberg DE: PTEX component Hsp101 mediates export of diverse malaria effectors into host erythrocytes. Nature 2014; 511: 592-595.

View Daniel E. Goldberg’s publications on PubMed.gov »